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Abstract

The focussing fields due to image charges and - currents
on a sqguirrel-cage-type conductor outside a relativistic
electron ring and on a conducting cylinder inside the
ring are calculated, using a thin ring approximation.
The resulting image contributions are then compared

with the self-field effects and an estimate is given

for the Landau-damping coefficient.




T. Introduction

In the acceleration or pre-acceleration phase focussing
of the axial betatron oscillations in a relativistic
electron ring may no longer be ensured by the external
guide field because its contribution may be weak com-
pared with the repulsive self-field effects.

The stabilizing effect exerted on axial betatron os-
cillations by images on metallic conductors or dielectrics
close to the ring has been investigated by several authors
2)’ Q)’ 5)’ 6). In %>the stabilization due to a squirrel-
cage-type conductor was first proved to be useful.

In the present paper the focussing properties of a system
composed of both a squirrel cage and a conductling cylinder
are investigated. We study their influence on radial and
axial betatron oscillations within the framework of a
test-particle model and compare the results with the
effects due to the self-fields of the electron ring,
applying the usual approximation for the toroidal effects 9.
The presence of an additional conducting cylinder inside
the electron ring may be required to produce a By -field

or be desirable for stabilizing negative-mass instabilities,
which calls for good azimuthal conductivity.




II. Model

To calculate image quantities (part III) we represent the
ER as a thin circular current ring A concentric with a
squirrel cage B and a conducting cylinder C. B consists
of N cylindrically ordered metallic ribbons and contains
C, whereas A lies between both and is assumed to be at
rest in our system of reference.

The thin-ring model will be relaxed in part IV when the
self-fields of the ring are calculated.

It should be noted that for calculating images the
assumption of a thin ring (9@'a) is evidently Justified
as long as 9¢ min (a-c, b-a). If it is borne in mind
that in plane geometry (i.e. a, b, ¢ —»%, but a-c,

b-a fixed) the small ring radius has no influence
upon the image fields, and that the contribution of

the squirrel cage to the image fields (which is greater
than that of the cylindrical conductor) is only weakly
dependent on curvature, being mainly dependent on the
anisotropy of the conductivity, reasonably good results
may be expected with our model also if 95; min (a-c,
b-a).



ring radius

squirrel-cage radius
cylinder radius

: width of slits

a
b
c
N: number of ribbons
d
1-d: width of ribbons
1

6: l%gfr angle corresponding to metallic ribbon (O< 9<ﬁ?ﬁ

I: ring current {é.snﬂ
Q: total ring charge [e.s.q] (= ens 2aT)

III. Derivation of the fields due to images

With the model specified above we calculate fields and field
gradients at the centre of the electron ring, following a
method which was prescribed by 9 5 a)in the case where only
a squirrel cage was present.




1. Expressions for the potentials

In cylindrical geometry we obtain from the Maxwell equations
the following well-known expressions for the electrostatic
potentials and the vector potential in terms of Modified
Bessel Functions In, K
and ¢ = 1):

i 7 (we assume electrostatic units

a) Sources

With a charge density Q (T, ¢ c?> = JX?) X(“”*ﬁ e
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b) Images

The potentials due to the images on the walls can be written:
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In these expressions we have used the fact that because of
to2,..0)
give a non vanishing contribution; this allows us to sub-
stitute NY=> ¥ , with -=W <Y LT, Then |l £ @ corresponds
to points on the metallic ribbon and B<|P]L T corresponds
to points on the slit.

symmetry only harmonics of the order m . N(m = O, i"1,

The total potentials are
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2. Solution of the boundary value problem

We require that Ey = 0, B, = 0 on the metallic (perfectly
conducting) surfaces and that E, B be continuous across the
slits of the squirrel cage. Thus we obtain for the potentials:

a) Continuity conditions

bso
For + = b, 6 <\y) (T we have [%ﬁ = 0, and so by

inserting (1), (3), (6) and using 6-03'6/)1,(;@/)—3;6/) k)= 3
(see J) we get:

=, g
(9) Z e R)e =0

WS ~ 0o b_‘o

From [?£Eﬂ=0we obtain
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(10) Du® = cu® Jmu bW
Co) = Con ) Uy (R18)
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b) Conditions on conductors
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By eliminating a,(t)and Cwm (k) we thus find the following
two infinite systems of equations for the unknown coefflclents
am(k), cm(k):
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Since the infinite series in (18) - (19) do not converge
uniformly in , approximate solutions cannot be obtained
for the lowest order Fourier coefficients co(k), ao(k)
simply by truncating the infinite series at some finite
order. This is a well-known problem in the theory of
diffraction of waves from plane gratings.

Next we write either set of equations (19), (20) in standard
fform:
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with the unknowns xn(k) and coefficients gn(k),ot(k), B(k)
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The sn(k) have the important property in(k)—bo, (k-=>0), as
follows from the asymptotic behaviour of modifled Bessel
functions:
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Hence we may write equation (21) in the following form:
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(22) -F(e ) = X“&) t:-l (S @6 f%&)

Considering f(e“t ) for the moment as a known expression,
eqs. (20), (21) constitute the Riemann-Gilbert problem,
which allows explicit solution of the x (k) in terms of

the p(h) and Fourier coefficients of f(e “f ) by integrating
the expressions in egs. (20), (21) along appropriate con-
tours in the complex g -plane ( i'-*e ) and Fourier
analyzing. For detalls of thils procedure see



We thus obtain the followlng expressions for xn(k), which
are, of course, not explicit in xn(k) because of eq.(22),
except in the limit k—=0, where f-ep(X(k)

(23)
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With 69 = these Integrals apply for the B-field

case. For the E field case we obtain the corresponding
expressions by substituting e by T - ® . We remark that
V may be expressed in terms of a finite sum of Legendre
functions P (cos @) for numerical calculation (see 1))

Z’is an integration constant which may be eliminated from

(23).

Xn@) ZXMM‘\ m@)v:( + (X@) ~X0&) ﬂ@) Vn, 4—26‘Q
L N LA PR ORVARS N T [ TRV

%@ = =2 8 % - d@)\/s'bﬂ“XoQ@ @@)Vs’o'zﬂ Ry

(n¥o)




- 10 =

It is now important that in any finite domain of k

(0 £ [k é“kmax) the m(k) uniformly approach zero for
m*——b%.

Therefore, we may set Em(k)’—‘- O for m > M (with M
sufficiently large) and obtain a finite set of in-
homogeneous linear equations in X, (n = 0...x ), which
are solved numerically. °
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3. Calculation of image field quantities

When the method mentioned above 1is applied, solutions are
found for the am(k), cm(k) up to any order of the smallness
parameter 5m(k), provided that k be restricted to

| & é=kmmgas. This restriction is allowed in the expressions
for the potentials because the integrals over k converge
exponentially for |k|l—>eo.

For linear betatron oscillations it is sufficient to con-
sider only the non-oscillating field contributions, i.e.
the zero-order angular harmonics connected with ao(k),
co(k).

The potential produced by the images on the composite system
of a squirrel cage and a cylinder may then be obtained by
evaluating the following integrals:

(20) 4> =-um@/mmt&z}§a &) W& e~ “"‘“’v@c)u a«]
+&~_@3 @c) L(@w)}

foron

29 A7 = AT o ot b [CROLGI- 000 4

o W ba) .
o B E@]“M kAQa)

The values of fields and field gradients at the position of

the ring may then be expressed in the following form, making
use of divE <0 and VxR =0 .

™
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]
|©
SIS
<




- 12 -
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where the coefflcients T, V depend on a, b, ¢ only via

= 2, i =+
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with t = bk , &m = b

< <
| I

It should be noted that the notation of %? is obtained
1f the following substitutions are made:

ples s, Vg K, Tp-»Y, Db->T, a->R

VM—5>L, TM-+>Z

The above results agree with those derived by a, where the
additional cylinder was absent, if terms containing c are
simply cancelled.

A change of the positions of the squirrel cage and cylinder
(1.e. p>1, q<1) may be obtained merely by replacing
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IV. Numerical evaluation and comparison of self-field and
image-field effects

1. Numerical solution of the boundary value problems for

In order to obtain the field coefficients (af #),
following Fortran computer program was written:

a) After introducing dimensionless parameters p = %,

q = %, t = kb, we solve (23) for a given set of values
for p, q, N, @ , assumingg]n(t) O for m>M (thus
yielding an inhomogeneous system of equations of order

Mo + 2. A value of Mo = 9 gave sufficient accuracy
within computer round-off. The (dimensionless) wavelength
min *°°° tmax’ these limits

being determined from convergence considerations of the

parameter t varies from t
Fourier integrals as will be discussed next.

b) The lowest-order Fourier coefficients resulting from
(23), i.e. ao(t), co(t), and the modified Bessel functions
I, k, are integrated according to egs. (%) - (25). It

is evident from the asymptotic behaviour of the modified
Bessel functions In(t), Kn(t) for t — O that all
integrands are bounded for t-— 0, taking into account

also the asymptotic behaviour of 8,5 Cys whlch results
from eqs. (18), (19) as a8y~ o(1), cofv o(t” ) for t—=0.
Hence the indefiniteness of the integrand at t = O may
be overcome simply by excluding a small neighbourhood of

t = 0 (we chose toin = 01 )

n

The upper limit of integration t has to be chosen

according to the following argumentati P from I (< t) —>
%,Mt) e, (Bt)-—->(/(u,) @ for t — e

we get the asymptotic behaviour of the Fourier coefficients

]
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6(1-p) ~t(4-p)
a (t)h-e' “P) e (t)nv-z—- using eqs. (48), (49).
Next it is seen that the integrands of any of the inte rals

2 -u—(q P))

(22) ... (25) converge more strongly than nALX(f ,f
and so tmax is chosen according to ?tww§wdw(p~gq-ﬁ)- T with
T (independent of p,q) sufficiently large (in our case
T =A0). An integration step dt = 0.1 proved to yield

sufficient accuracy.

2. Results

In fig. 1 - 3 we display the dependenefvof the axial
br;_\_ 06y 0 _
focussing force constant 5 oy 5 (B =1) on the
data of the squirrel cage 1n the case where no additional
cylinder is presenﬁVJWe observe an optimal focussing effect

for &= W, and N 2 30 in agreement with 2)

In tables 1 - 3 the followlng quantities are listed for
different sets of the parameters p, q, N, included the
case where the squirrel cage 1s replaced by a cylinder:

oy 06r _ o 9B _ ot 0% o _a o> HEy
B 5y ! IE“L%/QE* 3%"&3‘%

and total forces (8 = 1)

QS/Q 3 o, 1T\'v O\/Q (‘DFV

€ .57 (wa)&( DE&) €y (

e 51 B €1 M are the electrostatic and magnetic image-
] 2
field coefficients considered in 3).
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3. Comparison with self-field effects and shift of betatron

With the results of %) for glyg- including self-field effects -
we obtain the following expressions:

@‘ 4) 64.6 - (37- 64,

(26 T A *f*l& (27‘ {)-5 + D
+q\,[(4 {))‘P +(4 K alL] 2

(27) Vl= — /u{ al- D P ﬁ-@ ‘F)fa, - (3 AM

* A

B K- aL}}

Poam @
a?_

K= ZT—Q_EY

L"% Bz

n: field index
Q.9 radil of elliptical cross section of the ring

¢ = G+ )2

i Zion'%Fg fractional neutralisation

M= %}‘ oL y= Net To = —"— classical electron radius
4.5 )40-1‘1' Nt ra ’ m, C?

me= 4340 - =

We note that the terms on the right side of (26), (27)
correspond to the following physical mechanisms: external
field, straight-beam field, toroidal correction, image
field, applied-field correction due to self-fields.

Assuming the following parameters for an ER




- 16 -

n = 0.02
a=2.5cm
¢ = 0.4 cm
9 = 0.3 cm
= 25
r?l;= 5 . 102
f =0
p = 0.8
(no cylinder inside)

we obtain:
2

v, &2 0.98 - {0.0004 - 0.015 + 0.024 + 0.000?}& 0.97
2

)Q’c 0.02 +{;0.0005 - 0.015 + 0.024 + 0.000f}x:0.0}

4, Landau-damping coefficient

An approximate expression for the image contribution to the
Landau-damping coefficient can be obtained as follows: From

)
4) the general expression for ¥, is
2 E, + v(aE"*‘(}aB) %
y.f = A—' 'VL + = A"Y\, + V‘
B;Q*l- E.,. image

For small displacements T = a-ng we obtain for the image

contribution
_0Ey o3
5» o cS[r (55 0 T] .
A\que ~ey|,//“ s where we used
divE:OandB}+ET=-/%.
° ° ®
N s Tzé( okt + uRe)
Thus 5% - % Jr 3 . o\ 0
(2.7 i —-en
¥ ek //* T=-a
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We calculate the derivatives with respect to v assuming a
plane model with an image current at a distance of 2(b-a)
from the source current and obtain

2 (%) - Lt ))J/ e 2
93e

and similarly ga %;%; = Zﬁ_
o
Thus g 2
L (2 A ) 2
a.ac ~ & PR V
s = N
JT a. b a (,MJQ,

Figures

Fig. 1 Axial focussing force as a function of &
(0 ¢ec 24 width of ribbon)

Fig. 2 Axial focussing force as a function of N
(number of ribbons)

Fig. 3 Axial focussing force as a function of P
for single squirrel cage, single cylinder
and squirrel cage with internal cylinder
(g =2p - 1).
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